

Grade 11 CSEC Biology Syllabus Objectives Herbert Morrison Technical High School Science Department

Grade 11 Biology Topics with Objectives

SECTION A - LIVING ORGANISMS IN THE ENVIRONMENT

TOPICS	OBJECTIVES	CONTENT/EXPLANATORY NOTES
TRANSPORT IN PLANTS	4.7 explain how the structure of xylem vessels is suited for their function;	Hollow tubes- non-living with lignified walls; no end walls- allow for a continuous flow of water.
	4.8 discuss the role of the process of transpiration in plants;	Transpiration stream from roots to leaves to be included.
	4.9 describe the effect of external factors on transpiration;	Light intensity, temperature, humidity, and air movements should be included.
	4.10 discuss adaption in plants to conserve water;	Simple treatment of root length, cuticle thickness, water storage.
	4.11 explain how the structure of the phloem is suited to its function;	Source □>□ Sink Translocation; storage organs; growing points. Formation of fruits/seeds; germination.

	4.12 identify the products stored in plants and animals and the sites	Roots, stems, leaves, fruits, seeds in plants; the liver, fat deposits in animals to be
STORAGE IN PLANTS	of storage;	included. Detailed structure of storage organs not required. Carry out food tests for starch, sugars and oil in storage organs.
	4.13 discuss the importance of food storage in living organisms.	Storage as a means of overcoming the need for continuous food intake or manufacture, providing for periods of scarcity, providing for special functions, such as, production of sexual or vegetative reproductive structures, development of embryos. Draw and annotate stages in germinating seeds; Draw buds from plant storage organs (stems and Tubers

TOPICS	OBJECTIVES	CONTENT/EXPLANATORY NOTES
EXCRETION, OSMOREGULATION AND HOMEOSTASIS	5.1 distinguish between egestion and excretion; Undigested material versus bilirubin in faeces, and urea in urine.	
	5.2 discuss the importance of excretion in living organisms;	Implications of toxicity. For example, carbon dioxide, heat, urea, water, oxygen, calcium oxalate and tannins.
	5.3 state how metabolic wastes are excreted from plants and animals; Leaf fall, loss of bark and storage in plants; lungs, skin, urinary systems in humans to be included.	
	5.4 relate the kidney to its osmoregulatory and excretory functions.	Highlight structure of the urinary system and kidney tubule; The function of the parts. Mention kidney failure and dialysis.

MOVEMENT	6.1 distinguish between	Annotated simple diagrams
	growth movements	of the gross
	in plants and	kidney structure
	movement in	and that of the
	animals;	nephron to
		illustrate the
		production of
		urine required.
		The distinction should be
		made between:
		(a) growth movement as
		shown by germinating
		seedlings,
		(c) Locomotion/whole
		movement as
		illustrated by animals.
	6.2 relate the structure of	Functions to include
	the skeleton to its	protection, support,
	function in humans;	locomotion, blood
		formation.
		Examine a
		human
		skeleton.
	6.3 discuss the	Comparison with flowering
	importance of	plants; make reference to
	locomotion in	role in nutrition and
	animals;	reproduction.

	6.4 describe the	The relationship between
	mechanism of	the bones and muscles of a
	movement in a human	limb. Behaviour of
	fore limb.	antagonistic muscles; types
		of joint, action at moveable
		joints.
		Draw, label and annotate a
		simple diagram of the long
		bone of a fore limb.
		Simple line
		drawing to
		show the
		relationships.
IRRIRABILITY		Note origin and
		insertion of
		muscles.
	7.1 Define 'stimulus' and	
	'response';	
	1.2 Describe the response	I ne response of stems and
	(a) green plants to	touch and gravity Relate
	stimuli:	observations to the
		behaviour of plants in
		natural situations.

(b) invertebrates to	The response of
variations in light	invertebrates for example.
intensity	millipedes, earthworms or
temperature and	woodlice
moisture:	
7.2 define recentor and	Sansa organs, muscle and
1.5 define receptor and	sense organs, muscle and
effector,	giands. Lear, petiole, apical
	meristem
7.4 explain why the	
response to	
stimuli is important for	
the survival of	
organisms;	
7.5 explain the relationship	Emphasis on the
among the receptor, the	coordinating function of the
central nervous	brain and spinal cord and
system and the	the roles of sensory and
effector;	motor neurones.
7.6 explain a simple reflex	Use of simple flow diagrams
action;	to show the pathway along
	which the impulse travels in
	the reflex. Diagrams showing
	a spinal cord and spinal
	nerves not required.
	Investigate
	changes in pupil
	size in response
	to changes in
	light intensity,

	using mirrors, or the knee jerk reflex.
/./ describe the functions	Cerebrum, cerebellum and
of the main	medulla.
regions of the brain;	
7.8 discuss the	Include alcohol and one
physiological, social	illegal drug. Mention the use
and economic effects	and abuse of prescription
of drug abuse;	drugs, for example, diet pills,
	tranquilisers, steroids,
	caffeine and analgesics (painkillers).
7.9 relate the structure	Cross section or longitudinal
of the human eye to	section of the eye required.
its functions as a	Role of rods and cones as
sense organ;	specialized receptor cells.
7.10 explain accommodation;	Long and near
sight defects and the	sightedness; the use of
corrections of each;	corrective lenses;
	glaucoma.

	7.11 relate structure of the	Role of skin structures in
	human skin to its	temperature control as an
	function in temperature	example of homeostasis is
	regulation and	required.
	protection.	-
		Mention skin care and the
		effect of chemicals. The
		importance of melanin
		and SPF (simple treatment
		only). Discuss the skin
		bleaching phenomenon.
GROWTH	8.1 make deductions from	Examples could involve
	simple investigations	measuring changes in
	designed to demonstrate	length, mass or surface
	growth in living	area using roots, leaves,
	organisms;	or other suitable material
	plants and animals.	or counting the number of
		leaves in a named plant
		from seedling to fruiting
		plant. Include cell
		division in meristem;
		Comparison of growth in
		plants and animals.
	8.2 describe the	Functions of the seed.
	structure of a	Draw, label and
	dicotyledonous seed;	annotate the
		external and
		internal structures
		of a seed.

	8.3 describe the processes taking place within a seed during germination.	Include breakdown of food stores and translocation to growing points.
REPRODUCTION	9.1 compare sexual and asexual reproduction;	Explanation that sexual reproduction leads to variation in the off-spring while asexual reproduction is conservative -offspring identical to the parent.
	9.2 describe the structure and function of the reproductive systems in humans;	Male and female reproductive systems. Functions of the various parts.
	9.3 describe the menstrual cycle;	The roles of oestrogen and progesterone and the effect of pregnancy on the menstrual cycle to be included. Include pituitary/gonads.
	9.4 outline the mechanism for bringing gametes together, their fusion and the development of the embryo in humans;	Include implantation, functions of the amnion, placenta and umbilical cord.

	F 1 1 1 1
9.5 discuss the	For example, natural, barrier,
advantages and	hormonal and surgical
disadvantages of	methods. Consider social
various methods of	aspects.
birth control;	
9.6 discuss the transmission	Implications of sexually
and control of Acquired	transmitted infections
Immune Deficiency	(STI's). Include causative
Syndrome (AIDS) and	agents. Mention prevention,
gonorrhoea;	treatment and control.
	Research and
	interpret Human
	Immunodeficiency
	Virus (HIV)
	incidence data in
	the Caribbean.
	Genetic variation,
	mutations,
	natural selection.
	evolution.
9.7 relate the parts of a	Knowledge of: petals,
flower to their functions;	sepals, anther, filament,
	stigma, style, ovary, ovules,
	embryo sac, micropyle and
	carpel required.
9.8 compare the structure	Names of pollinating agents
of an insect pollinated	required.
flower and a wind	-
pollinated flower;	

	9.9 distinguish between the processes of pollination and fertilisation;	Means by which male and female gametes are brought together and their fusion to form the zygote of a flowering plant. Include cross and selfpollination.
	9.10 explain how fruit and seed formation occur after fertilization;	Knowledge of the processes in dicotyledon plants only.
DISEASE	9.11 describe fruit structure including adaptations for fruit and seed dispersal.	At least one example of water, wind, mechanical and animal dispersal methods. Mention the importance of Dispersal Draw examples of fruits and seeds to show adaptations for dispersal
	10.1 distinguish among pathogenic, deficiency, hereditary and physiological diseases;	Include examples of each.

10.2 identify the stages in the life cycle of a mosquito; Include habitat and mode of life of each stage.	Collect eggs and larvae of mosquitoes. Make observations and drawings of complete metamorphosis.
10.3 discuss the role of the mosquito as a vector in the transmission of pathogenic diseases;	
10.4 suggest appropriate methods of control of each stage of the life cycle of mosquito;	
10.5 discuss the treatment and control of the four main groups of disease; Knowledge of malaria, dengue, yellow fever required.	The role of diet and exercise in controlling physiological diseases: hypertension and diabetes to be included. Knowledge of insulin and glucagon required.
10.6 discuss the social, environmental and economic implications of disease with reference to both plant and animal diseases.	Emphasize loss of productivity, loss of human life, livestock and agricultural crops.

CONTINUITY AND VARIATION	1.1 distinguish among	DNA (deoxyribonucleic acid)
	DNA, chromosomes,	as nucleic acid that contain
	genes and alleles;	all genetic information.
		Gene as a portion/segment
		of DNA that carries
		information to produce a
		specific protein.
		Chromosome as DNA and
		protein (histones). Haploid
		as the 'n' number of
		chromosomes. Diploid as
		the '2n' number of
		chromosomes. Alleles as two
		or multiple forms of the
		same gene.
		Construct
		models of the
		structure of
		DNA and
		chromosomes.
		Relationships
MITOSIS		between gene;
		allele; DNA;
		chromosome
		protein.
	2.1 describe the process of	Emphasis on its importance
	mitosis;	for maintaining species
		Chromosome number.
		Nemion the replication of
		chromosomes. Names of
		stages are not required.

	2.2 explain the role of mitosis in asexual reproduction;	Include at least two examples of asexual reproduction in plants such as sugarcane cuttings and Bryophyllum leaves.
	2.3 explain why asexual reproduction gives rise to genetically identical offspring;	Cloning as the reproduction of populations of genetically identical individuals.
MEOSIS	2.4 describe the process of meiosis;	Simple treatment to include only homologous pairs, crossing over, separation of homologous chromosomes and subsequent separation of chromatids. Names of stages not required.
	2.5 state the importance of halving of chromosome number in the formation of gametes;	
	2.6 explain the role of meiosis in the transmission of inheritable genetic characteristics;	Role of crossing over random assortment and recombination in genetic variation (benefits of sexual reproduction).

HEREDITY AND GENETICS	2.7 explain the meaning of the following terms: dominant trait, recessive trait, codominance, genotype, phenotype, homozygous and heterozygous;	Codominance: blood group inheritance
	2.8 explain the inheritance of traits (dominant and recessive genes);	Examples to include Sickle cell anaemia, and albinism. Genetic diagrams required.
	2.9 predict the results of crosses involving one pair of alleles in the heterozygous, homozygous dominant and recessive conditions;	Include Punnet squares and pedigree charts to show dominant, recessive and codominant traits. Include genotypic and phenotypic ratios. Students should be able to identify the various phenotypic ratios obtained from crossing homozygous and heterozygous parental genotypes.
SEX LINKED DETERMINATION AND SEX LINKED DISEASES	2.10 describe the mechanism of sex determination and inheritance of sex linked diseases in humans;	Include example of sex linked disease such as haemophilia and colour blindness.

VARIATION AND EVULOTION	3.1 explain how genetic variation arises;	Sexual reproduction; mutation.
	3.2 explain why genetic variation is important;	Variation makes it less likely that a change in environmental conditions will wipe out an entire species.
	3.3 distinguish between continuous and discontinuous variation in populations;	Example: foot size, presence or absence of horns in cattle, pod size, tongue rolling, and leaf size. Mention genetic and environmental effects. Carry out a survey on appropriate characteristics; for example, observe and record the range of variation in a particular feature of any kind of organism.

NATURAL SELECTION	4.1 define a species;	 4.1 define a species; Include biological species concept (group of closely related organisms that are able to interbreed and produce fertile offspring). Give examples of species of birds, plants that can interbreed. When two unrelated species mate, their offspring are not viable or if survive will be infertile, for example, the mule.
	4.2 describe how new species are formed;	Two types: -Speciation caused by physical geographic separation such as a river forming, colonizing a new island or rise of a mountain range (occurs with loss of habitat or the formation of new habitat); -Speciation caused by ecological and behavioral differences such as courtship behaviour/ differences in coloration. Note: Over time, species can also go extinct due to hunting/habitat loss/disease, for example, Caribbean Monk Seal.

5.1 explain how natural	Natural selection as a process
selection plays a role in	by which a population retains
biological evolution;	those genes which makes it
population.	adapted to its habitat.
I I I I I I I I I I I I I I I I I I I	Natural selection normally
	preserves useful adaptations.
	Relate genetic variation to
	natural selection (variation
	provides the template for
	natural selection to act on)
	natural selection to act on).
	Mutation
	Research how
	natural
	selection has
	played a role in
	the evolution of
	cassava plants.
	sea turtles, and
	Caribbean
	lizards
	lizarus.
	The peppered moth the
	Galapagos finches bacterial
	resistance to antibiotics
	pesticide resistance: the
	rediction of the Caribbeen
	lizende Lize other legel
	nzarus. Use other local
	examples. For example,
	nower coloration: If a goat is
	attracted to red flowers and
	eats 75% of red flowers

	compared to the pink flowers in population, it acts as the selective force that leads to changes in the overall genetic diversity of the plant
5.2 distinguish between natural and artificial selection;	Mention plant and animal breeding. Humans select traits to suit their needs. Cite local examples.
6.1 describe how genetic engineering can be used to change the traits of an organism;	Changing the traits of one organism by inserting genetic material from a different organism.
	Include food production and medical treatment. For example, insulin production and incorporation of beta carotene producing gene in rice for areas that are affected by night blindness.
6.2 discuss the possible advantages and disadvantages of genetic engineering.	Social, ethical and ecological implications; Fingerprinting, DNA tests, gene therapy, captive breeding programmes.