


## **Grade 10 CSEC Biology Syllabus Objectives** Herbert Morrison Technical High School Science Department



## **GRADE 10 BIOLOGY TOPICS WITH OBJECTIVES**

## SECTION A - LIVING ORGANISMS IN THE ENVIRONMENT

| TOPICS                                | OBJECTIVES                                                                                           | CONTENT/EXPLANATORY<br>NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. THE VARIETY OF LIVING<br>ORGANISMS | 1.1. group living organisms found in a named habitat based on observed similarities and differences; |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2. CLASSIFICATION OF LIVING<br>THINGS | 2.1. classify organisms into taxonomic groups based on physical similarities;                        | Simple classification of living<br>organisms into the <i>five</i><br><i>kingdoms: Plantae, Animalia;</i><br><i>Fungi (mushroom), Prokaryotae</i><br>( <i>Bacteria</i> ) and Proctotista<br>( <i>amoeba</i> ).<br><i>Further subdivision of</i><br><i>the Animal Kingdom into Phyla,</i><br><i>for example, Vertebrate which includes</i><br><i>Classes (fish, reptiles,</i><br><i>insects, birds mammals).</i><br><i>These are further classified to</i><br><i>the level of species.</i><br><i>Further subdivision of</i><br><i>the Plant Kingdom into Phyla,</i><br><i>for example, Flowering Plants which</i><br><i>includes Monocotyledon and</i><br><i>Dicotyledon</i> |

| ECOLOGY AND THE IMPACT OF<br>ABIOTIC FACTORS ON LIVING<br>ORGANISMS | 2.1 Carry out a simple<br>ecological study<br>using the most<br>appropriate<br>collecting and<br>sampling methods;                                                 | Use quadrats to<br>investigate the<br>distribution of<br>species in a<br>particular habitat;<br>Use of pooters,<br>bottles, jars, nets,<br>sieves, quadrats,<br>line and belt<br>transects, mark,<br>release and<br>recapture methods<br>to collect data on<br>organisms from a<br>named habitat.                                                                   |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | <ul> <li>2.2 Distinguish between<br/>the following pairs of<br/>terms:</li> <li>(a) abiotic and biotic<br/>factors,</li> <li>(b) niche and<br/>habitat,</li> </ul> | Ecology – the study of living<br>organisms in their<br>environment. Ecosystem- a<br>community of living<br>organisms sharing an<br>environment. Environment –<br>the abiotic (non-living<br>chemical and physical) and biotic (living)<br>factors. Habitat - the place<br>where a particular organism<br>lives. Niche – the role of an<br>organism in an ecosystem. |

|                                            | Students should be able to:<br>(c) population and<br>community,<br>(d) species and<br>population;  | Species – a group of<br>individuals of common<br>ancestry that closely<br>resemble each other and are<br>normally capable of<br>interbreeding to produce a<br>fertile offspring.<br>Population – members of a<br>particular species living in a<br>particular habitat.<br>Community – all the<br>populations of different<br>species found living in a<br>particular habitat. |
|--------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | 2.3 discuss the impact of<br>the abiotic factors (soil,<br>water, climate) on living<br>organisms; | Components of soil<br>– air (O2) and,<br>water-holding<br>capacity, mineral<br>nutrients, pH and<br>salinity.                                                                                                                                                                                                                                                                 |
| FEEDING RELATIONSHIPS<br>BETWEEN ORGANISMS | 3.1 Identify the relative<br>positions of producers<br>and consumers in food<br>chains;            | Construct food chains and simple pyramids.                                                                                                                                                                                                                                                                                                                                    |

| 3.2 Identify from each<br>habitat, a food chain<br>containing at least four<br>organisms; | Terrestrial (arboreal and<br>edaphic) and aquatic (marine<br>and freshwater) habitats.<br>Construct food<br>chains using organisms in each<br>habitat.                                              |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.3 identify from each habitat:<br>herbivore, carnivore and<br>omnivore;                  |                                                                                                                                                                                                     |
| 3.4 Identify from each<br>habitat, predator/ prey<br>relationships;                       | Terrestrial arboreal and<br>edaphic) and aquatic (marine<br>and fresh water) habitats.<br>Example of the application of<br>predator relationship. <b>The use of</b><br><b>'Biological Controls'</b> |
| 3.5 construct a food web to include different trophic levels;                             | Use of examples from the<br>habitat(s) investigated. Students<br>may be required to interpret a<br>food web containing unfamiliar<br>examples.                                                      |
|                                                                                           | Identify<br>different<br>trophic levels<br>in food webs.                                                                                                                                            |

|                            | 3.6 explain the role of decomposers;                                    | Role of fungi and bacteria in<br>converting complex compounds<br>to simple substances.                                                                                                                                          |
|----------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | 3.7 assess the special relationships among organisms;                   | Simple of symbiotic<br>relationships: parasitism,<br>commensalism, mutualism -<br>using local examples, such as lice<br>and ticks on mammals,<br>epiphytes on trees, nitrogen<br>fixing bacteria in root nodules of<br>legumes. |
|                            | 4.1 explain energy flow within a food chain or web;                     | Simple diagram of non-cyclic energy flow from the sun.                                                                                                                                                                          |
|                            |                                                                         | <ul> <li>( Ecological Pyramids to include<br/>Pyramid of Number, Biomass, Energy<br/>must)</li> <li>Bioaccumulation</li> </ul>                                                                                                  |
| THE CYCLING OF NUTRIENTS   | 5.1 explain, with examples,<br>the impact of the<br>continual re-use of | Note the role of decomposers in the <b>Carbon Cycle.</b>                                                                                                                                                                        |
| POPULATION GROWTH, NATURAL | materials in nature;<br>5.2 discuss the<br>importance of and            | Consider biodegradable and non-biodegradable materials,                                                                                                                                                                         |

| RESOURCES AND THEIR LIMITS                         | difficulties<br>encountered in<br>recycling<br>manufactured<br>materials;                                                                                                                    | collection, transport and<br>storage; note economic factors.<br>Interpret data on<br>waste<br>management and<br>pollution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THE EFFECT OF HUMAN ACTIVITY<br>ON THE ENVIRONMENT | <ul> <li>6.1 describe the impact<br/>of human activities<br/>on natural<br/>resources;</li> <li>6.2 explain the negative<br/>impact of human<br/>activity on the<br/>environment;</li> </ul> | <ul> <li>Human activities to include the production of Energy and the use and extraction of resources such as mineral, trees from the forest, organisms from the marine, environment as well as over population and over fishing.</li> <li>Consider pollution by agricultural practices such as use of chemical fertilizers; products of industrialization and improper garbage disposal. Impact on eco-tourism.</li> <li>Loss of habitat, species; impact on human health.</li> <li>Research projects. (For example, collect data on use of agricultural chemicals and its impact on the environment).</li> </ul> |

| 6.3 Assess the<br>implications of<br>pollution of marine<br>and wetland environments;                     | Refer specifically to impact on<br>the health of ecosystems,<br>aesthetic and economic benefits<br>to small island states.<br>Research and<br>interpret data on<br>pollution of marine<br>environments in<br>the Caribbean, for<br>example, <b>Coral</b><br><b>reefs.</b> |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.4 Discuss current and<br>future trends<br>regarding climate<br>change;                                  | Refer to increase in greenhouse<br>gases, rising global<br>temperatures, rising sea levels<br>and ocean acidification.                                                                                                                                                    |
| 6.5 Suggest means by<br>which the<br>environment could<br>be conserved and<br>restored;                   | Consider effect of the<br>change in practices;<br>example use of natural<br>materials in agriculture,<br>conservation methods,<br>education, monitoring<br>strategies, organic<br>agriculture.                                                                            |
| 7.1 Discuss the factors<br>that affect the<br>growth and<br>survival of<br>populations<br>including human | Include competition for food<br>and space; effects of<br>disease, pests, invasive<br>species, natural disasters.                                                                                                                                                          |

|       | populations.                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                     |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     |
| CELLS | <ul> <li>1.1 compare the structure<br/>of the generalised plant<br/>and animal cells, and<br/>selected microbes;</li> <li>1.2 distinguish between<br/>cell wall and cell<br/>membrane;<br/>mitochondrion and<br/>chloroplast;</li> </ul> | Cell wall, cell membrane,<br>nucleus, cytoplasm,<br>vacuoles, mitochondrion,<br>chloroplast. Microbes to<br>include bacterium, Protista,<br>for example, amoeba.<br>Simple structure of a<br>bacterium to include<br>nucleoid, cell wall, capsule<br>and flagellum. |
|       | 1.3 relate the structure of<br>organelles to their<br>functions;                                                                                                                                                                         | Simple treatment of<br>chloroplast; mitochondrion;<br>vacuole; nucleus. For<br>example, nucleus:<br>chromosomes carry genetic<br>information in the form of<br>DNA                                                                                                  |

| 1.4 differentiate between<br>plant and animal cells;                                   | Reference to plant cells as<br>characterised by the<br>presence of a cell wall, large<br>vacuoles and chloroplasts.<br>Relate structure of plant and animal cells<br>to their function.                                                                                                                                            |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.5 explain the<br>importance of cell<br>specialization in multicellular<br>organisms; | Examples of specialized cells from both<br>plants and animals.<br>Consideration that a number<br>Of cells come together to form tissues<br>and tissues (for<br>example, epidermis, xylem,<br>phloem) come together to<br>form organs (leaf, stem) and<br>organ come together to form systems<br>(transpiration;<br>translocation). |

| 1.6 explain the processes | Importance of diffusion and                                  |
|---------------------------|--------------------------------------------------------------|
| of diffusion and          | osmosis in transporting                                      |
| osmosis;                  | substances in and out of cells                               |
| osmosis,                  | and from one cell to another in                              |
|                           |                                                              |
|                           | all living organisms. Reference<br>to the cell membrane as a |
|                           |                                                              |
|                           | differentially permeable                                     |
|                           | membrane, contrast with cell                                 |
|                           | wall which is freely permeable.                              |
|                           | Carry out simple                                             |
|                           | investigations                                               |
|                           | to illustrate the                                            |
|                           | movement of                                                  |
|                           | particles                                                    |
|                           | (molecules and                                               |
|                           | ions).                                                       |
|                           | Identify everyday                                            |
|                           | instances of                                                 |
|                           | these processes                                              |
|                           | occurring                                                    |
|                           |                                                              |
|                           | Key terms to note: Hypotonic solution,                       |
|                           | hypertonic solution and Isotonic                             |
|                           |                                                              |
|                           | solution.                                                    |
|                           |                                                              |
|                           |                                                              |
|                           |                                                              |

| 3. NUTRITION | 1.7 discuss the importance<br>of diffusion, osmosis<br>and active transport in<br>living systems. | Cite examples of each process<br>occurring in living organisms.<br>For example, <b>diffusion</b> across<br>membrane of Amoeba, gas<br>exchange across respiratory<br>surfaces, absorption in small<br>intestine, <b>active uptake</b> of<br>mineral ions by plant roots |
|--------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 2.1 distinguish among<br>heterotrophic,<br>autotrophic and<br>saprophytic nutrition;              | Simple inorganic substances<br>used by plants compared to<br>complex organic substances<br>consumed by animals and<br>fungi.<br>Identify sources<br>of food for a<br>named<br>organism for<br>each type of nutrition.                                                   |
|              | 2.2 describe the process<br>of photosynthesis in<br>green plants;                                 | Simple treatment involving<br>an equation to summarize<br>the process;<br>- the evolution of oxygen<br>as a result of the<br>splitting of water by<br>light energy;<br>- the subsequent                                                                                 |

| reduction of carbon      |
|--------------------------|
| dioxide to a             |
| carbohydrate;            |
| - the chloroplast as the |
| site of the reaction;    |
| - role of chlorophyll;   |
| - the fate of products   |
| (metabolised to provide  |
| energy or stored).       |
|                          |
| Test for                 |
| evolution of             |
| oxygen using             |
| water plant.             |
| water plant.             |
| Carry out                |
| controlled               |
|                          |
| experiments to           |
| demonstrate              |
| that light and           |
| chlorophyll are          |
| necessary for            |
| photosynthesis;          |
| Tests for end            |
| products, starch         |
| or reducing              |
| sugar.                   |
|                          |

| 2.3 relate the structure<br>of the leaf of a<br>flowering plant to its<br>function in<br>photosynthesis; | The external features and<br>the internal structure of a<br>dicotyledonous leaf as seen<br>in cross section under the<br>light microscope. Emphasize<br>adaptations for<br>photosynthesis (stomata;<br>intercellular spaces;<br>chloroplasts in palisade layer<br>close to epidermis). |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.3 relate the structure<br>of the leaf of a<br>flowering plant to its<br>function in<br>photosynthesis; | The external features and<br>the internal structure of a<br>dicotyledonous leaf as seen<br>in cross section under thelight<br>microscope. Emphasise<br>adaptations for<br>photosynthesis (stomata;<br>intercellular spaces;<br>chloroplasts in palisade layer<br>close to epidermis).  |
| 2.4 explain how<br>environmental factors<br>affect the rate of<br>photosynthesis;                        | Explanations and investigations should<br>include<br>to include<br>temperature,<br>water and CO2.                                                                                                                                                                                      |

| 2.5 discuss the<br>importance of minerals<br>in plant nutrition using<br>nitrogen and<br>magnesium as<br>examples; | Emphasis on the importance<br>of nitrogen in the formation<br>of proteins and magnesium<br>in the formation of<br>chlorophyll.                                                                                         |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.6 perform tests to<br>distinguish among food<br>substances;                                                      | Starch, protein, lipids,<br>reducing and non-reducing<br>sugars; chemical and<br>physical properties<br>(solubility) of carbohydrates,<br>proteins, lipids; hydrolysis<br>and condensation<br>(dehydration synthesis). |
| 2.7 relate the structures<br>of the human<br>alimentary canal to<br>their functions;                               | Simple diagrams of the<br>alimentary canal and<br>internal structure of a tooth<br>required.<br>Mastication and the role of<br>teeth in the mechanical<br>breakdown of food to be<br>included.                         |
| 2.8 explain the role and<br>importance of<br>enzymes;                                                              | Inclusion of <b>catalysis</b> .<br><b>Properties</b> of enzymes, <b>role</b><br>of digestive enzymes in the<br>mouth, stomach and<br>pancreatic enzymes in the                                                         |

|                                                                                                                  | small intestine.                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.9 investigate the effect<br>of temperature and<br>pH on the activity of<br>the enzymes catalase<br>or amylase; | Candidates may be asked to<br>deduce from tables and<br>graphs the effects of<br>temperature and pH on<br>enzyme activity.                                                                                                                                                                                                                                                             |
| 2.10 describe what<br>happens to the<br>products of digestion<br>after their absorption;                         | Simple diagram of villi and<br>role in absorption of<br>products of digestion.<br>Transport to the liver and<br>assimilation to be included,<br>that is, how products are<br>used and what happens to<br>excess.                                                                                                                                                                       |
| 2.11 discuss the<br>importance of a<br>balanced diet in<br>human.                                                | Components of a balanced<br>diet (including vitamins and<br>minerals and their roles).<br>The results of their<br>deficiency or surplus<br>(malnutrition).<br>The effects of age, sex and<br>occupation on dietary needs.<br>Vegetarianism<br>Dietary recommendations<br>for treating and preventing<br>named deficiency and<br>physiological diseases –<br>diabetes and hypertension. |

| 3. RESPIRATION | 3.1 describe the process<br>of aerobic<br>respiration;                                                     | Involvement of enzymes in<br>releasing energy as <b>ATP</b> .<br>Distinguish between<br>respiration and breathing.<br>Simple treatment. A<br><b>chemical and word equation</b><br><b>to show the starting</b><br><b>materials and final products</b><br><b>of aerobic respiration is</b><br><b>required.</b> |
|----------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 3.2 distinguish between<br>aerobic and<br>anaerobic<br>respiration;                                        | Include the production of<br>lactic acid in muscle, alcohol<br>and carbon dioxide in plants,<br>production of bio-gas from<br>organic matter.                                                                                                                                                                |
|                | 3.3 describe the<br>mechanism of<br>breathing in humans<br>and gaseous<br>exchange in<br>flowering plants; | Simple diagrams to show<br>the relationship between the<br>trachea, the bronchi, alveoli<br>and lungs and the<br>diaphragm and ribcage<br>required. The necessity for a<br>continuous supply of oxygen<br>and the removal of waste<br>products to be included.                                               |

|                                       | 3.4 identify characteristics<br>common to gaseous<br>exchange surfaces;                             | Emphasis on mechanisms<br>for increasing surface area<br>in humans, fish and plants.                                                                                                                                                                                             |
|---------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | 3.5 discuss the effects of smoking.                                                                 | For example, nicotine<br>addiction, damage to the<br>lining of the lungs, cancercausing<br>effects and<br>reduction in the oxygen<br>carrying capacity of the<br>blood. Marijuana addiction,<br>acute chest illness,<br>obstruction of airways (no<br>further details required). |
| 4. TRANSPORT<br>TRANSPORT IN ANINMALS | 4.1 explain the need for<br>transport systems in<br>multi-cellular<br>organisms;                    | The limitations of simple<br>diffusion. Comparison with<br>single celled organism such<br>as the amoeba. The<br>relationship between<br>surface area and volume.                                                                                                                 |
|                                       | 4.2 identify the materials<br>which need to be<br>transported in<br>animals and<br>plants;          | Oxygen, carbon dioxide,<br>hormones, mineral<br>nutrients, glucose and<br>amino acids.                                                                                                                                                                                           |
|                                       | 4.3 describe <i>the structure</i><br><i>and function of</i> the<br>circulatory system in<br>humans; | Structure and function of the<br>heart. Names of blood<br>vessels supplying lungs,<br>kidney, liver, brain, intestine                                                                                                                                                            |

| 4.4 relate the structure of the                                                                           | only.<br>Draw diagrams<br>to show<br>differences in<br>the structures of<br>arteries, veins<br>and capillaries.   |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 4.4 relate the structure of the components of blood to their function;                                    | Diagrams of red and<br>white blood cells<br>required.                                                             |
| 4.5 describe the role of<br>blood in defending the body<br>against disease;                               | Include the <i>clotting</i><br><i>mechanism; the role of</i><br><i>phagocytes and natural</i><br><i>immunity.</i> |
| 4.6 explain how the principles<br>of immunisation are used in<br>the control of<br>communicable diseases; | Key terms<br>Antigen/antibody,<br>variation, natural<br>selection .                                               |